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context of finite difference schemes in vorticity formulation
has a long history, going back at least to the 1930s whenThis paper discusses three basic issues related to the design of

finite difference schemes for unsteady viscous incompressible Thom’s formula (see (2.4)) was derived [20]. Thom’s for-
flows using vorticity formulations: the boundary condition for mula is generally referred to as being local since vorticity
vorticity, an efficient time-stepping procedure, and the relation

at the boundary is given by a local relation which does notbetween these schemes and the ones based on velocity–pressure
involve coupling to other points at the boundary. Thereformulation. We show that many of the newly developed global

vorticity boundary conditions can actually be written as some was a resurgence of interest in the 1960s and early 1970s
local formulas derived earlier. We also show that if we couple a when many variants of Thom’s formula were derived (see
standard centered difference scheme with third- or fourth-order

Section 2 and [18]). But the application of these formulasexplicit Runge–Kutta methods, the resulting schemes have no
in actual computations met with only limited success. Itcell Reynolds number constraints. For high Reynolds number

flows, these schemes are stable under the CFL condition given was not clear, for example, whether high order formulas
by the convective terms. Finally, we show that the classical MAC such as Pearson’s were actually better than lower order
scheme is the same as Thom’s formula coupled with second- ones. Since most of the computations at the time were
order centered differences in the interior, in the sense that one

steady state calculations, these formulas were used in ancan define discrete vorticity in a natural way for the MAC scheme
iterative procedure, and choosing the right relaxation pa-and get the same values as the ones computed from Thom’s

formula. We use this to derive an efficient fourth-order Runge– rameter for the iteration was an issue that caused a great
Kutta time discretization for the MAC scheme from the one for deal of confusion. The status as of 1974 was summarized
Thom’s formula. We present numerical results for driven cavity in the review article of Orszag and Israeli [12].
flow at high Reynolds number (105). Q 1996 Academic Press, Inc.

The point of view that has been heavily favored in the
last decade is that the vorticity boundary condition has to
be global; i.e., one has to solve a system of equations1. INTRODUCTION
coupling all points on the boundary together to be able
to get the boundary value of vorticity. Several ways ofIn this paper we discuss three basic issues related to the
obtaining such global vorticity boundary conditions weredesign of finite difference schemes for unsteady viscous
proposed, most notably the methods of Quartapelle et al.incompressible flows using vorticity formulation: the
[15] and Anderson [1]. A comprehensive review of all theseboundary condition for vorticity, an efficient time-stepping
issues can be found in [8].procedure, and the relation between these schemes and the

The main purpose of Section 2 is to show that in theones based on velocity–pressure formulation. Our interest
context of finite difference schemes, many of these newlywill be mainly in the unsteady and possibly turbulent be-
developed global vorticity boundary conditions can actu-havior at intermediate time scales, not the ultralong time
ally be written as some local formulas such as Thom’s. Asbehavior at low Reynolds number. Therefore most of our
examples we will look at Quartapelle’s vorticity boundarydiscussion will not be relevant to steady state calculations.
condition and several versions of Anderson’s. We showAlthough throughout this paper we will use mostly forward
that the simplest form of Quartapelle’s vorticity boundaryEuler to illustrate our point, extension to Runge–Kutta
condition is the same as Thom’s formula. The one givenschemes is straightforward.
by Anderson in [1] is the same as Fromm’s formula. WeThe subject of the vorticity boundary condition in the
also give a general recipe for converting a discrete form of
Anderson’s global vorticity boundary condition into local

* Current address: Courant Institute of Mathematical Sciences, New
ones. This raises serious doubt on the usefulness of theseYork University, New York, NY 10012. Email: weinan@cims.nyu.edu.
global boundary conditions since they are much more com-† On leave from Department of Mathematics, Temple University, Phil-

adelphia, PA 19122. Email: jliu@math.temple.edu. plicated to implement than the local ones.
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Although in Quartapelle’s method vorticity at the accurate and have good stability properties. These will be
presented in subsequent papers [4, 5].boundary is given by a local formula in terms of the stream

function, the effect is still global since the viscous term
must be treated implicitly. Consequently at each time step 2. GLOBAL VS LOCAL VORTICITY
a coupled system involving vorticity and the stream func- BOUNDARY CONDITIONS
tion has to be solved. Much of the confusion and complex-

2.1. Local Vorticity Boundary Conditionsity in this subject comes from solving this coupled system.
We will discuss this briefly in Section 2. For more details, The 2D Navier–Stokes equation in vorticity-stream
we refer the reader to the review articles [12, 8] for early function formulation reads: (u 5 (u, v))
work which resulted in a great deal of confusion and [8,
15] for the more recent treatment which overcomes these
earlier problems at the expense of introducing complicated
methods. It is remarkable that all these confusions and com-

­tg 1 (u ? =)g 5 n Dg,

Dc 5 g,

u 5 2­yf, v 5 ­xf

(2.1)
plications can be avoided entirely by treating the viscous
term explicitly.

In Section 3 we discuss the issue of the cell Reynolds
with the boundary conditionnumber constraint in connection with a centered difference

scheme. It is well known that for the simple advection
equation, centered difference in space and forward Euler c 5 0,

­c

­n
5 0.

in time result in an unconditionally unstable scheme. Al-
though a diffusion term stabilizes the scheme, the cell

Here we used the no-slip boundary condition. Adding in-Reynolds number has to be less than 2 to avoid stability
homogeneous terms to the boundary condition onlyconstraints even more severe than the diffusive one. This
amounts to minor changes in what follows. At the gridhas often been used as an argument against using centered
points, (2.1) is discretized using standard centered differ-difference and explicit methods. We show in Section 3 that
ence formulas:these problems can be overcome simply by resorting to

third- and fourth-order explicit Runge–Kutta methods.
This way we avoid all cell Reynolds number constraint dg

dt
2 D̃yc D̃xg 1 D̃xc D̃yg 5 v Dhg,

(2.2)caused by stability. For high Reynolds number flows, these
schemes are stable under the standard CFL condition given

Dhc 5 g,by the convection term. Indeed in the calculations pre-
sented in Section 4 and [4] the cell Reynolds number was

where D̃x , D̃y are the standard centered differences andas high as 102 and even 103.
Dh is the standard 5-point Laplacian. We will use i and jIn Section 4 we make a few remarks on the relation
to number the grid lines in the x and y directions, respec-between the methods discussed here and the MAC type
tively, with i 5 0 at the boundary Gy and j 5 0 at Gx . Theof schemes using primitive variables. We show that Thom’s
no penetration boundary condition c 5 0 is imposed onformula coupled with standard second-order centered dif-
G in the solution of the discrete Poisson equation. The no-ference scheme in the vorticity-stream function formula-
slip condition is imposed (say on Gx) viation is the same method as the classical MAC scheme in

the sense that there is a natural way to define the discrete
vorticity in the MAC scheme, which will have the same ci,1 2 ci,21

2 Dy
5 0, (2.3)

values as the ones computed using this centered scheme
coupled with Thom’s formula in the absence of rounding
error. We explore this equivalence between different for- where (i, 21) refers to the ‘‘ghost’’ grid point outside of
mulations by translating a straightforward Runge–Kutta the computational domain. Since ci,0 5 ci21,0 5 ci11,0 5 0,
method in the vorticity-stream function formulation to an (2.3) implies
explicit Runge–Kutta procedure for the MAC scheme.

Before ending this introduction let us remark that the
gi,0 5 (Dhc)i,0 5

ci11,0 2 2ci,0 1 ci21,0

Dx2

(2.4)
main obstacles for designing efficient finite difference
methods using the vorticity variable have been the global
vorticity boundary condition and the implicit time-step- 1

ci,1 2 2ci,0 1 ci,21

Dy2 5
2

Dy2 ci,1
ping, both introduce complicated coupling at the boundary.
Once these are cleared, we can design very simple and
efficient methods for both 2D and 3D that are high order which is the well-known Thom’s formula.
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TABLE I

Summary of Variants of Thom’s Formula

Reference g 2 c formulation MAC scheme

g0, j 5
2

Dx2 c1, jThom, 1933 v21/2, j 5 2v1/2, j

c21, j 5 c1, j

g0, j 5
3

Dx2 c1, j 2
1
2

g1, j v21/2, j 5 2
5
2

v1/2, j 1
1
2

v3/2, j 2
1

2 Dy
(u1, j11/2 2 u1, j21/2)Woods, 1954

g0, j 5
1

Dx2 c1, jFromm, 1963 v21/2, j 5 0

c21, j 5 0

g0, j 5
1

2 Dx2 (8c1, j 2 c2, j) v21/2, j 5 2
5
2

v1/2, j 1
1
2

v3/2, jWilkes, 1963

c21, j 5 3 c1, j 2
1
2

c2, jPearson, 1965

g0, j 5
1

3 Dx2 (10c1, j 2 c2, j) v21/2, j 5 22v1/2, j 1
1
3

v3/2, jOrszag and Israeli, 1974

c21, j 5
7
3

c1, j 2
1
3

c2, j

g0, j 5
1

13 Dx2 (35c1, j 2 c3, j) v21/2, j 5 2
21
13

v1/2, j 1
1

13
v3/2, j 1

1
13

v5/2, jOrszag and Israeli, 1974

c21, j 5
22
13

c1, j 2
1

13
c3, j

Many variants of Thom’s formulas have been proposed. g0, j 5 (­2
xc)0, j

For later reference we summarize them here in Table I.
In the spirit of Section 4, we will list the equivalent formulas 5

1
12 Dx2 (11c21, j 1 6c1, j 1 4c2, j 2 c3, j) 1 O(h4).

in the velocity variable when the MAC scheme is used
in the interior. To understand how these formulas were

The combination givesderived, we also provide the interpretation of these formu-
las in terms of the boundary condition ­c/­n 5 0. The
vorticity boundary conditions are obtained from the Neu- g0, j 5

1
18 Dx2 (108c1, j 2 27c2, j 1 4c3, j),

mann boundary condition for c, together with the second-
order formula: g0, j 5 (Dhc)0, j . Woods’ formula appears

This formula was derived in Briley [2].special in this table since it involves interior values of vor-
We implemented these formulas for the unsteady Stokesticity.

equation on the domain [21, 1] 3 [0, 2f] with no-slipHigh order formulas can also be found in the literature.
boundary condition in the x-direction and periodic bound-For example, a fourth-order accurate formula can be ob-
ary condition in the y-direction. An exact solution of thistained by using the one-sided difference approximation for
problem is given by [13]:the Neumann boundary condition for c,

u(x, y, t) 5 û(x)eiy1st, v(x, y, t) 5 v̂(x)eiy1st,
c21, j 5 6c1, j 2 2c2, j 1 Adc3, j ,

p(x, y, t) 5 p̂(x)eiy1st,

wheretogether with the one-sided formula
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Gris [16], is the following: (2.5) has a solution if and only
if g is orthogonal (with respect to the standard L2 inner
product) to H , the space of harmonic functions on V.

Quartapelle and co-workers have suggested several ways
of implementing this idea, with the viscous term treated
implicitly. One attractive feature of this formulation is the
flexibility of spatial discretization: finite difference, finite
element, and spectral methods can all be used. In the con-
text of finite difference schemes, the simplest implementa-
tion of Quartapelle’s method amounts to the following:

gn11 2 gn

Dt
1 (un ? =h)gn 5 n Dhgn11 for i, j $ 1,

Dhc n11 5 gn11 for i, j $ 1,

c n11uG 5 0,

Dnc n11uG 5 0.

(2.6)

FIG. 1. Relative error in v for the Fromm’s formula (solid line),
Thom’s formula (dashed line), Wilkes–Pearson’s formula (dotted line),
and Orszag–Israeli’s formula (dot-dashed line). Time is discretized using

(Dn is a finite difference approximation to ­/­n.) The keymid-point rule. The errors for Thom’s formula, Wilkes–Pearson’s for-
mula, and Orszag–Israeli’s formula are too small to be seen on this graph. here is that at the time step n 1 1, both boundary conditions
Parameters: viscosity 5 0.01, Dt 5 0.001, Dx 5 0.01. on c n11 are satisfied. Quartapelle et al. suggested the fol-

lowing procedure to implement this [15]:

Step 1. Form a system of the form
û(x) 5 cos ex 2 cos e

cosh x
cosh 1

,

Agn11
b 5 b (2.7)

v̂(x) 5
e
i

sin ex 1
1
i

cos e
sinh x
cosh 1

,
for the boundary values of vorticity at the new time step
by requiring that gn11 be orthogonal to all the discrete

p̂(x) 5 s cos e
sinh x
cosh 1

, harmonic functions.

Step 2. Solve (2.7) to obtain the boundary value of
e 5 2.8833556585893, s 5 2n(e2 1 1). The time step was gn11, gn11

b .
chosen to be sufficiently small so that the error in time
discretization is negligible. The relative error for n at time
t 5 1 with n 5 0.01, Dx 5 0.01 is given in Figs. 1 and 2
for Fromm’s, Thom’s, Wilkes–Pearson’s, and Orszag and
Israeli’s (the first of the two) formulas. As expected,
Fromm’s formula performs poorly since it is only first-
order accurate. The other three give more or less compara-
ble results. Orszag and Israeli’s formula does slightly better
at the boundary.

2.2. Quartapelle’s Vorticity Boundary Condition

In the spatially continuous form we can state the con-
straint on vorticity as follows: g is such that the over-
determined problem

Dc 5 g,
(2.5)

c u G 5 0,
­c

­nU
G

5 0,
FIG. 2. Relative error in v for the Thom’s formula (dashed line),

Wilkes–Pearson’s formula (dotted line), and Orszag–Israeli’s formula
(solid line). Parameters: viscosity 5 0.01, Dt 5 0.001, Dx 5 0.01.has a solution. The key idea, due to Quartapelle and Valz-
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Step 3. Solve the first equation in (2.6) to get gn11. until convergence is reached. As it turns out, this is not
such a good method for solving the coupled system (2.6).This method requires knowing all the discrete harmonic
It may even diverge [12] and some kind of relaxation isfunctions and/or discrete Green’s function at all boundary
necessary to get convergence. Furthermore, it appears thatpoints. These are linear spaces with dimension N equal to
for higher order formulas such as Pearson’s, convergencethe number of grid points at the boundary. This might not
is more difficult to reach. This is the main reason for thebe too bad for 2D but it is prohibitively expensive for
difficulties described in [12].3D. Knowing all the discrete harmonic functions, one can

In the last decade or so, new approaches such as theconstruct the matrix A (which is a full matrix) at the prepro-
influence matrix techniques are developed to solve (2.6).cessing stage. Then forming (2.7) at each time step only
Typically a key step in these new methods is to form andrequires the computation of b. This is still quite expensive,
solve (2.7) for the boundary value of vorticity. While over-though, since it requires the evaluation of N volume inte-
coming the difficulties mentioned earlier, these new meth-grals. For the details see [15].
ods are troubled by their complexity, overhead, and storageIf Dn is approximated by the centered difference, then
requirement. We refer to [8, 15] for details of these newit follows from the derivation presented in the beginning
methods.of this section that

In contrast, if we had treated the viscous term explicitly,
i.e., replacing (2.6) by

gn11
i,0 5

2
Dy2 c n11

i,1 , gn11
0, j 5

2
Dx2 c n11

1, j , i, j $ 0. (2.8)

which is the same as Thom’s formula.
If, on the other hand, Dn is approximated by first-order

one-sided difference, i.e.,

gn11 2 gn

Dt
1 (un ? =h)gn 5 n Dhgn for i, j $ 1,

Dhc n11 5 gn11 for i, j $ 1,

c n11uG 5 0,

Dnc n11uG 5 0,

(2.12)

(Dnc)i,0 5
ci,1 2 ci,0

Dy
on Gx , (2.9)

then a similar derivation gives
then the resulting scheme can be realized by a simple three-
step marching procedure. Given hgn

i, jj, hgn11
i, j j is com-

gn11
i,0 5

1
Dy2 c n11

i,1 , gn11
0, j 5

1
Dx2 c n11

1, j , i, j $ 0, (2.10) puted by:

Step 1. Update the vorticity at the interior gridwhich is Fromm’s formula.
points by

Remark. Although (2.8) and (2.10) seem local, they
are not truly local since c n11 is affected by gn11 everywhere,
due to the implicit treatment of the viscous term. Since c n11 gn11 2 gn

Dt
2 D̃yc

n D̃xgn 1 D̃xc
n D̃ygn 5 n Dhgn. (2.13)

and gn11 are coupled together by the boundary condition, a
coupled system (2.6) has to be solved at each time step.
This is where difficulties arise. Step 2. Solve

The old approach, widely used in the 1960s, is to solve
(2.6) using an iterative procedure. A simple example is the Dhc n11 5 gn11, (2.14)
following: Set gn11,0 5 gn and for m 5 0, 1, 2, ... use

with the boundary condition c n11uG 5 0.

Step 3. Update the vorticity at the boundary using

gn11
i,0 5

2
Dy2 c n11

i,1 , gn11
0, j 5

2
Dx2 c n11

1, j . (2.15)

gn11,m11 2 gn

Dt
2 D̃yc

n D̃xgn

1 D̃xc n D̃ygn 5 n Dhgn11,m,

Dhc n11,m11 5 gn11,m11,

c n11,m11uG 5 0,

gn11,m11
i,0 5

2
Dy2 c n11,m11

i,1 ,

gn11,m11
0, j 5

2
Dx2 c n11,m11

1, j ,

(2.11)
It is important that (2.14) can be solved without knowing
the boundary value of gn11. Hence there is no need to
iterate between c n11 and the boundary value of gn11. At
every time step, only one standard Poisson solve is re-
quired.
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2.3. Anderson’s Vorticity Boundary Condition Step 3. Compute

At the continuous level, Anderson’s method can be for-
gn11 5 gn 1 Dt(2(un ? =h)gn 1 n Dhgn) (2.20)mulated as follows: If DncuG 5 0 at t 5 0, then DncuG 5 0

is equivalent to Dn(­c/­t)uG 5 0. Since
at all the interior mesh points, where the boundary value
of gn is taken as gn

b .­c

­t
5 D21

0
­g
­t

5 D21
0 (2(u ? =)g 1 n Dg)

The effect of Steps 1 and 2 is to ensure that

(the subscript 0 means the homogeneous Dirichlet bound- Dnc n11 5 0, c n11 5 D21
h,0gn11 (2.21)

ary condition is taken), we can write the boundary condi-
tion DncuG 5 0 as when gn11 is computed from (2.20). In particular, we have

c n11 5 0 not only on G but also at the grid points next to
DnD21

0 (2(u ? =)g 1 n Dg) 5 0. (2.16) G. We can write Anderson’s method as

When a spatial discretization is taken, this becomes

DnD21
h,0(2(u ? =h)g 1 n Dhg) 5 0. (2.17)

gn11 2 gn

Dt
1 (un ? =)gn 5 n Dhgn

at interior grid points,

Dh,0c
n11 5 gn11,

Dnc n11 5 0 at Gx , Gy .

(2.22)

Writing g 5 gin 1 gbd , where gbd vanishes at the interior
grid points and gin vanishes at boundary grid points, we get

DnD21
h,0(2(u ? =h)gbd 1 n Dhgbd)

(2.18)
Anderson’s three-step formulation can be stated as: Given
hgn

i, jji, j$1 , there exists a unique gn
b 5 gnuG , namely the solu-

5 2DnD21
h,0(2(u ? =h)gin 1 n Dhgin).

tion of (2.19), such that (2.22) has a unique set of solutions
hgn11

i, j ji, j$1 , hc n11
i, j ji, j$0 . Notice that gn

b is just an auxiliary
This is Anderson’s formulation of the vorticity boundary variable used to obtain hgn11

i, j ji, j$1 , hc n11
i, j ji, j$0 .

condition. There is a much simpler way of implementing (2.22),
In the following, we present several examples of imple- without even thinking about gn

b 5 gnuG . In this formulation,
menting (2.18) in a fully discrete scheme and show that in it is helpful to think of the lines G9h 5 hi 5 1j < h j 5 1j as
all these cases, (2.18) can be written as local formulas. the numerical boundary, even though the method is exactly

The first example is the original Anderson’s method the same as (2.22).
presented in [1]. Here Dh is the standard 5-point Laplacian. Initialization. Given hg0

i, jji, j$1 , define c 0uG 5 0 and solve
Let Dh,0g be the discrete Laplacian of g using zero as the
boundary value of g. Given hgn

i, jji, j$1 , Anderson’s method
for computing hgn11

i, j ji, j$1 consists of the following three
Dhc 0 5 g0, i, j $ 2,

c 0uG9h
5 0.steps [1]. The purpose of the first and second steps is to

compute the boundary value of gn, gn
b .

Modify g0uG9h
such thatStep 1. Solve Dh,0c

n 5 gn, compute un 5 (2D̃yc
n,

D̃xc
n) at the interior mesh points, and then compute F̃ 5

(un ? =h)gn 2 n Dh,0gn at the interior mesh points. At the g0
i,1 5

1
Dy2 c 0

i,2 , g0
1, j 5

1
Dx2 c 0

2, j .boundary the nonlinear convective term is computed using
the one-sided difference. Therefore this step does not in-
volve the boundary value of gn. This is to ensure that c 0 is a solution of

Step 2. Determine the boundary value of gn by solving
Dhc 0 5 g0, i, j $ 1,

c 0uG 5 0.
(2.23)

DnD21
h,0(n Dhgn

b) 5 Dn D21
h,0F̃. (2.19)

Here gn
b is identified as it has been extended to all the In other words, the solution of (2.23) actually satisfies

c 0uG9h
5 0, i.e., Dnc 0uG 5 0.interior mesh points with the value zero; Dn is a finite

difference approximation of ­/­n on G. In [1], Anderson Time-stepping procedure. Given hgn
i, jji, j$1 , such that c n 5

D21
h,0gn also satisfies Dnc nuG 5 0, i.e., c nuG9h

5 0.chose the first-order one-sided formula (2.9).
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Step 1. Compute
(Dnc)i,0 5

4ci,1 2 ci,2 2 3ci,0

2 Dy
, (2.25)

gn11 2 gn

Dt
1 (un ? =)gn 5 n Dhgn for i, j $ 2. (2.24)

we can still write Anderson’s method as (2.22) with Dn

replaced by Dn . To understand the connection with local
formulas in this case we breakStep 2. Let c n11uG 5 0 and solve

Dh,0c
n11 5 gn11,

Dnc n11 5 0 at Gx , Gy

(2.26)
Dhc n11 5 gn11, i, j $ 2,

c n11uG9h
5 0,

into several pieces:and set
1. Set c n11

i,0 5 0, c n11
0, j 5 0, i, j $ 0.

2. Solvegn11
i,1 5

1
Dy2 c n11

i,2 , gn11
1, j 5

1
Dx2 c n11

2, j , i, j $ 1,

which is Fromm’s formula. This last step has the effect of
Dhc n11 5 gn11,

4c n11
i,1 2 c n11

i,2

2 Dy
5 0,

4c n11
1, j 2 c n11

2, j

2 Dx
5 0

(2.27)ensuring that c n11 is also a solution of

for hc n11
i, j ji, j$1 .

Dhc n11 5 gn11, i, j $ 1,

c n11uG 5 0,
3. Compute

i.e., c n11 5 D21
h,0gn11 satisfies both the Dirichlet and Neu- gn11

i,1 5 (Dhc n11)i,1 , gn11
1, j 5 (Dhc n11)1, j . (2.28)

mann boundary conditions:

As before, this is just a different way of implementing
c n11uG 5 0, Dnc n11uG 5 0.

(2.26). Using (2.27) and (2.28), we get

The Neumann boundary condition is the same as
c n11uG9h

5 0. gn11
i,1 5 (Dhc n11)i,1 5

1
h2 (c n11

i,2 1 c n11
i11,1 1 c n11

i21,1 2 4c n11
i,1 )

It is obvious that the numerical solutions obtained
through this procedure satisfy (2.22). Therefore this is ex- 5

1
4h2 (c n11

i11,2 1 c n11
i21,2) (2.29)

actly the same method as Anderson’s. The global vorticity
boundary condition (2.19) is replaced by Fromm’s formula.

5
1
4

gn11
i,2 1

15
16h2 c n11

i,2 2
1

4h2 c n11
i,3 .In other words, the effect of implementing Anderson’s

global boundary condition on G is exactly the same as imple-
menting Fromm’s formula on G9h . To make the connection This can be viewed as
more transparent, let us remark that after obtaining
hgn11

i, j ji, j$1 , one can find gn
b by requiring that (2.19) also

gi,0 5
1
4

gi,1 1
15

16h2 ci,1 2
1

4h2 ci,2 (2.30)hold for i or j 5 1, i.e., on G9h . This gives the solution of
gn

b . However, it is important to realize that the method
can be implemented without using gn

b . imposed on G9. Equation (2.30) is analogous to Woods’
In the method discussed above, it is straightforward to formula but is slightly more complicated.

replace the forward Euler by the higher order explicit
This can be formulated as a general recipe for convertingRunge–Kutta and require that the no-slip boundary condi-

Anderson’s vorticity boundary condition into local for-tion be satisfied at each stage of the Runge–Kutta method.
mulas. To explain this, let us take the example of a fourth-A second-order time discretization was presented in [17].
order spatial discretization in which ­2/­x2 is approximatedThe same argument as we presented above can then be
by the standard five-point fourth-order formula D2

x(1 2applied to each stage, proving that in this case Anderson’s
vorticity boundary condition is still the same as Fromm’s (h2/12)D2

x), and the boundary condition DncuG 5 0 is used
twice at the boundary with one-sided fourth-order approxi-formula.

If we replace the first-order accurate formula (2.9) by a mation for Dn . In [17], a fourth-order implementation of
Anderson’s method was outlined but no details were given.second-order one-sided difference:
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The above strategy is the closest we can think of to fit the ut 1 aux 5 nuxx , (3.2)
outline. Again we will use forward Euler as an illustration
since extension to the high order explicit Runge–Kutta is this scheme is stable only under the constraint
straightforward.

Because of the wide stencil used, vorticity boundary
Dt Sa2

2n
1

2n
Dx2D, 1. (3.3)conditions are needed at the two rows of grid points near

the boundary. Written in terms of g 5 gin 1 gbd , Ander-
son’s vorticity boundary conditions are

Therefore, we must have

Dn(D̃21
h,0gn11) 5 0, D̃n(D̃21

h,0gn11) 5 0, (2.31)
n

Dt
Dx2 ,

1
2

, Dt ,
2n
a2 . (3.4)

where Dn and D̃n are two one-sided (fourth-order) approx-
imations to Dn , D̃h 5 D2

x(1 2 (h2/12)D2
x) 1 D2

y(1 2
The first condition in (3.4) is the standard diffusive con-(h2/12)D2

y), except at i, or j 5 1, where it has to be modified
straint on time steps. The second one reflects the fact thatto make it slightly one-sided. To obtain the equivalent
the scheme is unstable if n 5 0.local formulas, we can proceed as follows. For concreteness

We can rewrite this second condition aswe concentrate on Gx :
We split (2.31) into several pieces:

a Dt
L

,
2

Re
, (3.5)(1) Set c n11

i,0 ; 0.

(2) Solve

where L is the size of the computational domain and Re 5
D̃hc n11 5 gn11 for i $ 3, La/n is the Reynolds number. The spatial resolution should

be chosen to resolve the smallest active scale in the flow.
This means that at high Reynolds number we should takeusing D̃nc n11uG 5 0, Dnc n11uG 5 0 as boundary conditions
Dx/L 5 O(Re21/2) for 2D, and Dx/L 5 O(Re23/4) for 3D.for hc n11

i,1 , c n11
i,2 j.

Consequently we have from (3.5)(3) Define

gn11
i,1 5 (D̃hc n11)i,1 , gn11

i,2 5 (D̃hc n11)i,2 . (2.32) a Dt
Dx

, O(Re21/2),
a Dt
Dx

, O(Re21/4) (3.6)

(1)–(3) is equivalent to
for 2D and 3D, respectively. This is a severe constraint,
since ideally we want a Dt/Dx 5 O(1) for Re @ 1.

From a slightly different point of view, if we demandD̃h,0c
n11 5 gn11

Dnc n11uG 5 0, D̃nc n11uG 5 0, the second condition in (3.4) to be less restrictive than the
standard diffusive condition, we should take

which is the same as (2.31).
Equations (2.32) are the local formula we are looking 2n

a2 .
Dx2

2n
, i.e., Rc 5

a Dx
n

, 2; (3.7)
for. This seems to be far more complicated than Briley’s
formula mentioned earlier which is also fourth-order ac-

Rc is called the cell Reynolds number. Inequality (3.3) andcurate.
this stability-caused cell Reynolds number constraint has
often been used as an argument against using centered3. CELL REYNOLDS NUMBER CONSTRAINT AND
differencing for the convection term at high ReynoldsHIGH ORDER RUNGE–KUTTA METHODS
number.

It is well known that if we use second-order centered It is important to realize that these constraints still re-
difference in space and forward Euler in time for the simple main even if we discretize the diffusion term implicitly,
advection equation, keeping the advection term explicit. Since the problem

comes from the advection term, at high Reynolds number
ut 1 aux 5 0, (3.1) the diffusion term is of very little help. Although such

constraints do disappear if we discretize the advection term
also implicitly, this is far too expensive. As we show below,the resulting scheme is unconditionally unstable. This has

the consequence that for the advection-diffusion equation, there is a much simpler solution to this problem.
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What causes this instability and the subsequent cell
Reynolds number constraint is the fact that the stability
region of the forward Euler method does not contain any
part of the imaginary axis. The same is true for the second-
order explicit Runge–Kutta methods, but not for third- and
fourth-order ones. The Fourier symbol for the centered
difference operator 2aD̃x 1 nD2

x is C(j) 5 ia sin(j/Dx) 2
(4n/Dx2) sin2(j/2). Therefore if we use the fourth-order
Runge–Kutta in time, the two stability conditions are

a Dt
Dx

# C1 , 4n
Dt

Dx2 # C2 , (3.8)

where C1 and C2 are some constants (for example, they
can be taken as 1.5). There is no cell Reynolds number
constraint imposed by stability considerations. The same
conclusions can be drawn for the third-order Runge–Kutta
method. From the point of view of accuracy, for Re @ 1,
Rc 5 Re(Dx/L) 5 O(Re1/2) for 2D and O(Re1/4) for 3D.
This does not present a constraint on the cell Reynolds FIG. 3. Staggered grid in the interior and at the boundary.
number either. Indeed in the calculations presented in
Section 4 and [4], the cell Reynolds number is as high as
102 and even 103. In particular, for Rc 5 a Dx/n . C1/4C2 ,

and similarly for D̃yu, Ẽyu, Dyu, Eyu; andthe size of Dt is controlled only by the CFL condition
coming from the convection terms.

Dhu 5 (D2
x 1 D2

y)u,

4. MAC SCHEME AND THOM’S FORMULA we can write the MAC scheme as

4.1. MAC Scheme

The MAC scheme [14] uses the velocity–pressure formu-
lation of the incompressible Navier–Stokes equation,

du
dt

1 u D̃xu 1 ExEyv D̃yu 1 Dx p 5 n Dhu, at ‘‘n’’ points,

dv
dt

1 ExEyu D̃xv 1 v D̃yv 1 Dy p 5 n Dhv, at ‘‘s’’ points,

Dxu 1 Dyv 5 0, at ‘‘h’’ points.
­tu 1 (u ? =)u 1 =p 5 n Du,

= ? u 5 0,
(4.1)

(4.2)
where u 5 (u, v). A special feature of the MAC scheme

The simplest way of treating the boundary is to use theis the use of the staggered grid (Fig. 3). One such grid is
reflection technique. On the segment Gx (see Fig. 3), thedisplayed in Fig. 3, where the pressure variable p is defined
boundary condition v 5 0 is imposed exactly at the ‘‘s’’at ‘‘h’’ points, the first and second component of the veloc-
points: vi21/2,0 5 0; the boundary condition u 5 0 is imposedity u and v are defined at ‘‘n’’ and ‘‘s’’ points, respec-
approximately at the ‘‘d’’ points by lettingtively. Define

ui,21/2 5 2ui,1/2 . (4.3)
D̃xu(x, y) 5

u(x 1 Dx, y) 2 u(x 2 Dx, y)
2 Dx

,
Similarly on Gy , we have

Dxu(x, y) 5
u(x 1 Dx/2, y) 2 u(x 2 Dx/2, y)

Dx
,

v21/2, j 5 2v1/2, j , u0, j21/2 5 0.

Ẽxu(x, y) 5
u(x 1 Dx, y) 1 u(x 2 Dx, y)

2
, Some doubts on the consistency of the reflection technique

near the boundary were expressed in [14]. We show in
Appendix 2 that while a naive truncation error analysisExu(x, y) 5

u(x 1 Dx/2, y) 1 u(x 2 Dx/2, y)
2

,
does seem to suggest that (4.3) leads to inconsistency near
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the boundary, a more careful analysis shows that there is
c̃i,0 5 0, ui, j21/2 5 2

c̃i, j 2 c̃i, j21

Dy
, j $ 1, (4.8)still overall second-order accuracy, even at the boundary.

The fully discrete MAC scheme, with the viscous term
treated explicitly, is given by

then from (4.2), we have

vi21/2, j 5
c̃i, j 2 c̃i21, j

Dx
, c̃0, j 5 0, (4.9)

and

un11 2 un

Dt
1 un D̃xun 1 ExEyvn D̃yun

1 Dx pn 5 n Dhun,

at ‘‘D’’ points,

vn11 2 vn

Dt
1 ExEyun D̃xvn 1 vn D̃yvn

1 Dy pn 5 n Dhvn,

at ‘‘s’’ points,

Dxun11 1 Dyvn11 5 0,

at ‘‘h’’ points.

(4.4)
Dhc̃ 5 g, at ‘‘d’’ points.

Therefore we have c̃ 5 c. Going back to (4.6), we get

gi,0 5
2

Dy2 ci,1

Applying the discrete divergence operator on the momen-
which is Thom’s formula. This shows that for the unsteadytum equations, we obtain an equation for pn in the form
Stokes equation, the MAC scheme and Thom’s formula,
coupled with the standard centered difference for the

Dh pn 5 terms involve un. (4.5) stream function–vorticity formulation are the same
method. The same is true for the fully discrete schemes.

There are other ways of treating the boundary for theThe boundary condition is already included in (4.5). We
MAC scheme. For convenience, we summarized these indenote the solution of this equation by pn 5 F (un).
Table I in Section 2 and listed the equivalent vorticity
boundary conditions. In particular, we note that the im-4.2. The MAC Scheme and Thom’s Formula
proved formula of Peyret and Taylor [14, (6.2.20a)] corre-

Let us first examine the MAC scheme in the linear case sponds to the first formula of Orszag and Israeli.
and return to the mesh in Fig. 3. Define the discrete vortic- When the nonlinear terms are taken into account, (2.2)
ity at ‘‘d’’ points as and (4.2) are not exactly the same any longer. They differ

by a quantity of O(Dx2 1 Dy2). However, a tedious calcula-
tion shows that (4.2) is the same as

gi, j 5 (=h 3 u)i, j 5 2
ui, j11/2 2 ui, j21/2

Dy
1

vi11/2, j 2 vi21/2, j

Dx
.

(4.6)
dg
dt

2
1
2

[D̃yc D̃xg 1 D̃x(D̃yc g)]

Applying the discrete curl operator to (4.2) (dropping the 1
1
2

[D̃xc D̃yg 1 D̃y(D̃xc g)] 5 n Dhg, (4.10)
nonlinear terms), we get

Dhc 5 g,
dg
dt

5 n Dhg, at ‘‘d’’ points.
at the ‘‘d’’ points. The details of that calculation is pre-
sented in Appendix 1. There is also an obvious analogous
statement for the fully discrete schemes.On Gx , we have

It is instructive to further explore this equivalence be-
tween vorticity-stream function and primitive variable for-
mulations with the forward Euler replaced by the classicalgi,0 5 2

2
Dy

ui,1/2 . (4.7)
Runge–Kutta method. In the vorticity-stream function for-
mulation the resulting method is the following: Given hgn,
cnji, j$0 , compute hgn11, cn11ji, j$0 byOn the other hand, if we define c̃ at the ‘‘d’’ points by
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g1 2 gn

As Dt
1 (un ? =h)gn 5 n Dhgn, c1 5 D21

h,0g1 ,

g2 2 gn

As Dt
1 (u1 ? =h)g1 5 n Dhg1 , c2 5 D21

h,0g2 ,

g3 2 gn

Dt
1 (u2 ? =h)g2 5 n Dhg2 , c3 5 D21

h,0g3 ,

k4 5 2Dt((u3 ? =h)g3 2 n Dhg3)

gn11 5 Ad(2gn 1 g1 1 2g2 1 g3) 1 Ahk4 , cn11 5 D21
h,0gn11

At every stage, the boundary value of vorticity is given by
Thom’s formula. The corresponding fully discrete MAC
scheme is then

FIG. 4. Driven cavity flow with ub(x) 5 1 at Reynolds number 104,
t 5 100, computed with the explicit MAC scheme with fourth-order

u1 2 un

As Dt
1 (un ? =h)un 1 =h pn 5 n Dhun, p1 5 F (u1)

u2 2 un

As Dt
1 (u1 ? =h)u1 1 =h p1 5 n Dhu1 , p2 5 F (u2)

u3 2 un

Dt
1 (u2 ? =h)u2 1 =h p2 5 n Dhu2 , p3 5 F (u3)

Runge–Kutta in time. Shown here is the contour plot of stream function.
Parameters: viscosity 5 1024, CFL 5 1.25, Dx 5 a!sk.

ber 105. These were computed on a 10242 grid with viscosity
k4 5 2Dt((u3 ? =h)u3 1 =h p3 2 n Dhu3) n 5 1025. We verified these numerical results using the

fourth-order scheme designed in [4] on 5122 and 10242
un11 5 Ad(2un 1 u1 1 2u2 1 u3) 1 Ahk4 , pn11 5 F (un11).

grids. Notice the extremely unsteady turbulent behavior
as a result of the boundary layer separations.Here we have written the nonlinear terms loosely as

(u ? =h)u. The full expression should be the one in (4.2).
Of course, for these two methods to be exactly the same,
we have to use the more complicated discretization for
the convection term as in (4.10).

This time-stepping procedure is very similar to the one
proposed by Johansson [11].

To illustrate the efficiency of these methods and the
importance of the high order Runge–Kutta procedure, we
present some numerical results for a canonical problem:
the driven cavity flow. The flow domain is [0, 1] 3 [0, 1].
We impose the no-slip condition. The upper boundary
moves with the velocity: ub(x) 5 1 or 16x2(1 2 x2). The
initial data is chosen to be: c0(x, y) 5 (y2 2 y3)ub(x).

First in Fig. 4 we show the numerical results for the case
ub(x) 5 1 at Reynolds number 104, t 5 100. This is a
standard test problem. There is a vast amount of numerical
work on this. Most of them, however, solve the steady state
equation directly [6, 19]. Although the methods presented
above should not be advertised for steady state calcula-
tions, they perform reasonably well for this problem. At
t 5 100, the flow has all the characteristic features of the
steady state [6]. However, at this point it is not entirely

FIG. 5. The driven cavity problem at t 5 5 and Reynolds numberclear whether the flow eventually reaches steady state in
105 computed using the explicit Thom’s formula with fourth-order Runge–

such an unsteady calculation. Kutta in time. Shown here is the contour plot of vorticity. Vortices are
In Figs. 5–8 we show our numerical results with the shed at the lower right corner as a result of the boundary layer separation.

Parameters: viscosity 5 1025, CFL 5 1.25, Dx 5 a;Qsf.boundary condition ub(x) 5 16x2(1 2 x2) at Reynolds num-
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FIG. 7. The driven cavity problem at t 5 8. Plotted here is the vorticityFIG. 6. Same as Fig. 5, but for the stream function. At the lower right
at the lower left quadrant. The contour lines are severely stretched. Aand upper left corners, the primary vortex has induced two generations of
mushroom-like structure forms as a result of the collision of vortices.secondary vortices.
Parameters: viscosity 5 1025, CFL 5 1.25, Dx 5 a;Qsf.

The calculation reported here took approximately 2
tion terms are treated using centered differences. We ex-h on the C-90 machine with a single processor at the
plained that while there is a severe constraint on the cellPittsburgh Supercomputing Center. A similar calculation
Reynolds number given by stability when first- and second-on a smaller mesh 5122 with a smaller Reynolds number
order Runge–Kutta methods are used in time, such con-(n 5 3 3 1025) was done on a SPARC-10 work-station,
traints disappear for higher order Runge–Kutta methods.and that took about three days. Obviously there is a lot
This is a significant fact with regard to the efficiency ofof room for improvement. We will return to this in a
centered schemes.separate paper [4].

The third issue we discussed is the relation between the
MAC scheme and the second-order centered difference

5. CONCLUSIONS schemes in the vorticity-stream function formulation, cou-
pled with various local formulas for the vorticity boundary
condition. We showed that the MAC scheme is the sameLet us summarize the issues discussed in this paper.

The first issue we discussed was the local and global as the standard second-order centered difference scheme
in the vorticity-stream function formulation, and the localvorticity boundary conditions. We showed that Anderson’s

global vorticity boundary condition can always be realized formulas for the vorticity boundary condition can be trans-
lated into local formulas for the velocity boundary condi-by local formulas, the simplest case being Fromm’s for-

mula. The non-locality of Quartapelle’s vorticity boundary tion and vice versa. In particular, Thom’s formula trans-
lates to the reflection boundary condition for the MACcondition comes from the fact that the viscous term is

insisted to be treated implicitly. Therefore even the seem- scheme.
From these discussions we arrive at the following basicingly local vorticity boundary condition turns out to be

global. design principles: (1) The viscous term should be treated
explicitly for finite difference schemes in the vorticity-A majority of the discussions in the literature on global

vorticity boundary conditions resemble Quartapelle’s, so stream function formulation. If one insists on treating the
viscous terms implicitly, then it is much better to use thethe global nature of the vorticity boundary condition is

really a result of the implicit treatment of the viscous projection method [3]. (2) One should use at least third-
order Runge–Kutta methods in time in connection withterm.

The second issue we discussed is the cell Reynolds num- centered differences in space for high Reynolds number
flows.ber constraint in connection with the fact that the convec-
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Since

E2
x 2 I 5

h2

4
D2

x , E2
y 2 I 5

h2

4
D2

y ,

we get

N(u, v) 5 Eyu D̃xg 1 Exv D̃yg

1
h2

4
(2D2

y ExvD̃y Dyu 1 D2
x EyuD̃x Dxv

2 D2
y Dyu ExEy Dyv 1 D2

x Dxv ExEy Dxu).

From (4.6)–(4.7) and

D̃xu 5 DxExu

we have
FIG. 8. The driven cavity problem at t 5 10. The flow is now consider-

ably more turbulent than in Figs. 5–6. A lot of small vortices form.
N(u, v) 5 2D̃yc D̃xg 1 D̃xc D̃ygParameters: viscosity 5 1025, CFL 5 1.25, Dx 5 a;Qsf.

1
h2

4
(D2

y D̃xc D̃y D̃2
yc 2 D2

x D̃yc D̃x D2
xc

APPENDIX 1: NONLINEAR TERMS

1 D4
yc D̃x D̃yc 2 D4

xc D̃x D̃yc).
Applying the discrete curl operator to (4.2), we get

Direct computation gives usdg
dt

1 N(u, v) 5 n Dhg, at ‘‘d’’ points,

N(u, v) 5 2D̃yc D̃xg 1 D̃xc D̃yg
where

1
h2

4
(D2

y D̃xc D̃y Dhc 2 D2
x D̃yc D̃x Dhc

N(u, v) 5 2Dy(u D0
x u 1 ExEyv D0

yu)

1 Dx(ExEyu D0
xv 1 v D0

yv). 1 D2
y Dhc D̃x D̃yc 2 D2

x Dhc D̃x D̃yc)

5 2D̃yc D̃xg 1 D̃xc D̃ygUsing

Dx(uv) 5 Dxu Exv 1 Exu Dxv, 1
h2

4
(D2

y D̃xc D̃yg 2 D2
x D̃yc D̃xg

we have
1 D2

yg D̃x D̃yc 2 D2
xg D̃x D̃yc).

N(u, v) 5 2EyuD̃x Dyu 2 ExvD̃y Dyu
Similarly, using

1 (I 2 E2
y)ExvD̃y Dyu 1 EyuD̃x Dxv

D̃x(uv) 5 D̃xu Ẽxv 1 Ẽxu D̃xv1 ExvD̃y Dxv 1 (E2
x 2 I)EyuD̃x Dxv

2 Dyu ExEy Dxu 2 ExEy Dyv E2
y Dyu Ẽx 2 I 5

h2

2
D2

x , Ẽy 2 I 5
h2

2
D2

y ,
1 (I 2 E2

y) Dyu ExEy Dyv 1 ExEy Dxu E2
x Dxv

1 Dxv ExEy Dyv 1 (E2
x 2 I) Dxv ExEy Dxu. we have
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u21/2 5 2u1/2 , un11/2 5 2un21/2 .2D̃x(D̃yc g) 1 D̃y(D̃xc g)

5 2D̃yc D̃xg 1 D̃xc D̃yg 1 (I 2 Ẽx) D̃yc D̃xg Clearly,

1 (Ẽy 2 I) D̃xc D̃yg 1 (I 2 Ẽx)g D̃x D̃yc D2
xui11/2 5 u0(xi11/2) 1 O(h2) for i 5 1, ..., n 2 2.

1 (Ẽy 2 I)g D̃y D̃xc
At x1/2 ,

5 2D̃yc D̃xg 1 D̃xc D̃yg

D2
xu1/2 5

u3/2 2 3u3/2

h2 5
u(x3/2) 2 3u(x3/2)

h2 1
1
4

u0(0)1
h2

2
(2D2

x D̃yc D̃xg 1 D2
y D̃xc D̃yg

2 D2
xg D̃x D̃yc 1 D2

yg D̃y D̃xc).
5

3
4

u0(x1/2) 1
h
8

u-(0) 2
1
4

u0(0) 1 O(h2)

Therefore,
5 u0(x1/2) 1 O(h2).

N(u, v) 5 2D̃yc D̃xg Similarly, we have

1 D̃xc D̃yg 1 As[D̃yc D̃xg 2 D̃x(D̃yc g)]

D2
xun21/2 5

u(xn23/2) 2 3u(xn23/2)
h2 1

1
4

u0(1)2 As[D̃xc D̃yg 2 D̃y(D̃xc g)]

5 2As[D̃yc D̃xg 1 D̃x(D̃yc g)] 5 u0(xn21/2) 1 O(h2).

1 As[D̃xc D̃yg 1 D̃y(D̃xc g)].
This gives

APPENDIX 2: CONSISTENCY NEAR THE BOUNDARY u(xi11/2) 2 ui11/2 5 O(h2).

FOR THE REFLECTION TECHNIQUE
The boundary condition mentioned in [14],

If we use the reflection boundary condition ui,21/2 1
u21/2 5 Ad(u3/2 2 6u1/2 1 8uG),ui,1/2 5 0 in the MAC scheme, a simple truncation error

analysis at x1/2 gives
corresponds to the first formula of Orszag and Israeli (see
Table I in Section 2).

D2
xu(x1/2 5

3
4

u0(x1/2) 1
h
8

u-(0) 1 O(h2),
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